Paper
Photochemical & Photobiological Sciences
8 V. Hagen, S. Frings, J. Bendig, D. Lorenz, B. Wiesner and
U. B. Kaupp, Fluorescence spectroscopic quantification of
the release of cyclic nucleotides from photocleavable [bis-
antitumor activity of a cis-dichloroplatinum(II) complex
linked to an intercalator via one methylene chain, Bioorg.
Med. Chem. Lett., 1997, 7, 1083–1086.
(carboxymethoxy)coumarin-4-yl]methyl esters inside cells, 20 J. V. Morris, M. A. Mahaney and J. R. Huber, Fluorescence
Angew. Chem., Int. Ed., 2002, 41, 3625–3628.
9 (a) Q. Lin, Q. Huang, C. Li, C. Bao, Z. Liu, F. Li and L. Zhu,
Anticancer drug release from a mesoporous silica based
quantum yield determinations. 9,10-Diphenylanthracene
as a reference standard in different solvents, J. Phys. Chem.,
1976, 80, 969–974.
nanophotocage regulated by either a one- or two-photon 21 E. L. Wehry, in Practical Fluorescence, ed. G. G. Guilbault,
process, J. Am. Chem. Soc., 2010, 132, 10645–10647; Marcel Dekker, Inc., New York, 1990.
(b) H.-M. Lin, W.-K. Wang, P.-A. Hsiung and S.-G. Shyu, 22 L. Goodman and R. W. Harrell, Calculation of n→π* tran-
Light-sensitive intelligent drug delivery systems of cou-
marin-modified mesoporous bioactive glass, Acta Biomater.,
2010, 6, 3256–3263.
sition energies in N-heterocyclic molecules by a one-elec-
tron approximation, J. Chem. Phys., 1959, 30, 1131–1138.
23 E. T. Ryan, T. Xiang, K. P. Johnston and M. A. Fox, Absorp-
tion and fluorescence studies of acridine in subcritical
and supercritical water, J. Phys. Chem. A, 1997, 101, 1827–
1835.
10 A. G. Ryder, S. Power, T. J. Glynn and J. J. Morrison, Time-
domain measurement of fluorescence lifetime variation
with pH, Proc. SPIE-Int. Soc. Opt. Eng., 2011, 4259, 102–109.
11 P. L. Russo, A. J. Wozniak, L. Polin, D. Capps, 24 (a) C. A. Parker,
A
new sensitive chemical
W. R. Leopold, L. M. Werbel, L. Biernat, M. E. Dan and
T. H. Corbett, Antitumor efficacy of PD115934 (NSC
366140) against solid tumors of mice, Cancer Res., 1990, 50,
4900–4905.
actinometer. I. Some trials with potassium ferrioxalate,
Proc. R. Soc. London, Ser. A, 1953, 220, 104–116;
(b) C. G. Hatchard and C. A. Parker, A new sensitive chemi-
cal actinometer. II. Potassium ferrioxalate as a standard
chemical actinometer, Proc. R. Soc. London, Ser. A, 1956,
235, 518–536.
12 Y. Mikata, K. Mogami, M. Kato, I. Okura and S. Yano, Syn-
thesis, characterization, interaction with DNA, and anti-
tumor activity of a cis-dichloroplatinum(II) complex linked 25 J. F. Rabek, Radiometry and actinometry: Experimental
to an intercalator via one methylene chain, Bioorg. Med.
Chem. Lett., 1997, 7, 1083–1086.
methods in photochemistry and photophysics, Wiley,
New York, 1982; vol. 2, p. 944.
13 N. Agorastos, L. Borsig, A. Renard, P. Antoni, G. Viola, 26 H. Suzuki and Y. Tanaka, An unusually acidic methyl group
B. Spingler, P. Kurz and R. Alberto, Cell-specific and
nuclear targeting with [M(CO)3]+ (M = 99mTc, Re)-based
directly bound to acridinium cation, J. Org. Chem., 2001,
66, 2227–2231.
complexes conjugated to acridine orange and bombesin, 27 T. Mosmann, Rapid colorimetric assay for cellular growth
Chem.–Eur. J., 2007, 13, 3842–3852.
and survival: application to proliferation and cytotoxicity
14 K. Zelenka, L. Borsig and R. Alberto, Metal complex
assays, J. Immunol. Methods, 1983, 65, 55–63.
mediated conjugation of peptides to nucleus targeting acri- 28 M. A. Schumacher, K. M. Piro and W. Xu, Insight into F
dine orange: a modular concept for dual-modality imaging
agents, Bioconjugate Chem., 2011, 22, 958–967.
15 A. Adams, J. M. Guss, W. A. Denny and L. P. G. Wakelin,
plasmid DNA segregation revealed by structures of SopB
and SopB-DNA complexes, Nucleic Acids Res., 2010, 38,
4514–4526.
Structure of 9-amino-[N-(2-dimethylamino)propyl]acridine- 29 A. W. Schüttelkopf and D. M. F. Aalten van, PRODRG: a
4-carboxamide bound to d(CGTACG)(2): a comparison of
structures of d(CGTACG)(2) complexed with intercalatorsin
tool for high-throughput crystallography of protein–ligand
complexes, Acta Crystallogr., 2004, D60, 1355–1363.
the presence of cobalt, Acta Crystallogr., Sect. D: Biol. 30 B. R. Brooks, C. L. Brooks III, A. D. Mackerell, L. Nilsson,
Crystallogr., 2004, 60, 823–828.
R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels,
S. Boresch, A. Caflisch, L. Caves, Q. Cui, A. R. Dinner,
M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im,
K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci,
R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor,
R. M. Venable, H. L. Woodcock, X. Wu, W. Yang,
D. M. York and M. Karplus:, CHARMM: the biomolecular
simulation program, J. Comp. Chem., 2009, 30, 1545–1614.
31 G. M. Morris, D. S. Goodsell, R. Huey and A. J. Olson, Dis-
tributed automated docking of flexible ligands to proteins:
parallel applications of AutoDock 2.4, J. Comput.-Aided Mol.
Des., 1996, 10, 293–304.
16 W. M. Cholody, S. Martelli and J. Konopat, Chromophore-
modified antineoplastic imidazoacridinones. Synthesis and
activity against murine leukemias, J. Med. Chem., 1992, 35,
378–382.
17 H. B. Zhuang, W. J. Tang, J. Y. Yu and Q. H. Song, Acridin-
9-ylmethoxycarbonyl (Amoc): a new photochemically remo-
vable protecting group for alcohols, Chin. J. Chem., 2006,
24, 1465–1468.
18 A. M. Piloto, G. Hungerford, S. P. G. Costa and
M. S. T. Gonçalves, Acridinyl methyl esters as photoactive
precursors in the release of neurotransmitter amino acids,
Photochem. Photobiol. Sci., 2013, 12, 339–347.
19 Y. Mikata, K. Mogami, M. Kato, I. Okura and S. Yano,
Synthesis, characterization, interaction with DNA, and
32 W. L. DeLano, The PyMOL Molecular Graphics System;
DeLano Scientific, San Carlos, CA, 2004, http://pymol.
sourceforge.net/
Photochem. Photobiol. Sci.
This journal is © The Royal Society of Chemistry and Owner Societies 2013