S. Tai, S. V. Marchi, and J. D. Carrick
Vol 000
BTP-tetramethylcyclohexyl (43).
IR (solid) cmÀ1 3076
133.40, 132.29, 132.22, 131.64, 131.09, 126.59, 126.28, 125.30,
HRMS (EI) m/z = 854.8409 (854.8415) calculated for
(vw), 2964 (m), 2933 (m), 1518 (s), 1505 (m), 1457 (s), 1387
(m), 1361 (vs), 1H-NMR (300 MHz, CDCl3) δ 8.69 (d,
J = 6.00 Hz, 2H), 8.10 (t, J = 6.00 Hz, 1H), 1.88 (s, 4H), 1.51 (s,
6H), 1.48 (s, 6H), 13C-NMR (75 MHz, CDCl3) δ 164.97,
163.38, 160.66, 153.77, 138.04, 125.19, 37.40, 36.58, 33.69,
33.43, 29.76, 29.12, HRMS (EI) m/z = 457.2966 (457.2954)
calculated for C27H35N7.
C35H19Br4N7 (3 × 79Br; 1 × 81Br)
BTP-4,4′-dihydroxyphenyl (39). IR (solid) cmÀ1, 3109 (br),
1652 (s), 1606 (vs), 1586 (vs), 1367 (vs), 1170 (s), 835 (m), 808
(m), 1H-NMR (500 MHz, DMSO-d6) δ 10.17 (s, 2H), 9.94 (s,
2H), 8.70 (d, J = 10.00Hz, 2H), 8.32 (t, J = 10.00 Hz, 1H),
7.64-7.61 (m, 4H), 7.51-7.48 (m, 4H), 6.88-6.85 (m, 4H),
6.84-6.81 (m, 4H), 13C-NMR (125 MHz, DMSO-d6) δ 160.13,
159.54, 158.85, 155.58, 154.70, 153.39, 138.54, 131.57, 130.68,
126.20, 125.88, 125.13, 116.09, 115.45, HRMS (EI and MALDI-
TOF failed due to extremely poor vaporization at maximum temp
of 450 °C) m/z = (605.1812) calculated for C35H23N7O4.
Acknowledgments. Financial support for this project was provided
by a grant from the Fuel Cycle Research and Development program,
Office of Nuclear Energy, U.S. Department of Energy, and the
Tennessee Technological University Department of Chemistry.
Support from NSF-RUI 9970016 is gratefully acknowledged for the
acquisition of the department’s 300-MHz NMR spectrometer. The
authors would also like to thank Dr. Markus W. Voehler, Vanderbilt
University for the acquisition of 13C-NMR data for compounds, 19,
21, 26-27, 36-37, 39, 42; supported in part by a grant for NMR
instrumentation NIH (S10 RR025677) and Vanderbilt University
matching funds, the University of Alabama and Dr. Qiaoli Liang for
acquisition of HRMS data, and Neil J. Williams of Oak Ridge
National Laboratory for the preparation of dicarbonyl 17.
REFERENCES AND NOTES
[1] (a) Downward, A. M.; Jane, R. T.; Polson, M. I. J.; Moore, E. G.;
Hartshorn, R. M. Dalton Trans 2012, 41, 14425; (b) Downward, A. M.;
Moore, E. G.; Hartshorn, R. M. Chem Comm 2011, 47, 7692;
(c) Xian-Lan, H.; Li, H.; Peng, C.-H. J Mol Struct 2011, 990, 197.
[2] (a) Katsagounos, G.; Stathatos, E.; Arabatzis, N. B.;
BTP-3,3′-dimethoxyphenyl (40).
IR (solid) cmÀ1 3060
(vw), 2970 (vw), 2934 (vw), 2840 (vw), 1673 (m), 1661 (m),
1462 (m), 1365 (s), 1232 (vs), 1039 (vs), 784 (vs), 703 (m),
1H-NMR (500 MHz, CDCl3) δ 8.92 (d, J = 10.00 Hz, 2H), 8.28
(t, J = 10.00 Hz, 1H), 7.36-7.27 (m, 10H), 7.16 (d,
J = 10.00 Hz, 2H), 7.04-6.95 (m, 4H), 3.77 (s, 3H), 3.70 (s,
3H), 13C-NMR (125 MHz, CDCl3) δ 159.81, 159.60, 159.51,
156.85, 156.64, 152.39, 139.25, 136.37, 136.07, 129.71,
126.14, 122.58, 122.12, 117.51, 116.46, 114.96, 114.92,
114.37, 55.38, 55.35, HRMS (EI) m/z = 661.2466 (661.2438)
calculated for C39H31N7O4.
Keramidas, A. D.; Lianos, P.
J Lumin 2011, 131, 1776; (b)
Miguirditchian, M.; Guillaneux, D.; Francois, N.; Airvault, S.; Ducros, S.;
Thauvin, D.; Madic, C.; Illemassene, M.; Lagarde, G.; Krupa, J.-C. Nuc
Sci Eng 2006, 153, 223.
[3] (a) For a recent review see: Panak, P. J.; Geist, A. Chem Rev
2013, 113, 1199; (b) Lewis, F. W.; Harwood, L. M.; Hudson, M. J.;
Distler, P.; John, J.; Stamberg, K.; Núñez, A.; Galán, H.; Espartero, A.
Eur J Org Chem 2012, 2012, 1509; (c) Laventine, D. M.; Afsar, A.;
Hudson, M. J.; Harwood, L. M. Heterocycles 2012, 86, 1419; (d) Lewis, F. W.;
Harwood, L. M.; Hudson, M. J.; Drew, M. G. B.; Desreux, J. F.; Vidick, G.;
Bouslimani, N.; Modolo, G.; Wilden, A.; Sypula, M.; Vu, T.-H.; Simonin, J.-P.
J Am Chem Soc 2011, 133, 13093; (e) Afsar, A.; Laventine, D. M.;
Harwood, L. M.; Hudson, M. J.; Geist, A. Chem Comm 2013, 49, 8534;
(f) Hudson, M. J.; Harwood, L. M.; Laventine, D. M.; Lewis, F. W. Inorg
Chem 2013, 52, 3413.
[4] Kolarik, Z.; Müllich, U.; Gassner, F. Solvent Extr Ion Exch
1999, 17, 1155.
[5] McKibben, J. M. Radiochem Acta 1984, 36, 3.
BTP-4,4′-dimethoxyphenyl (41).
IR (solid) cmÀ1 3020
[6] (a) Dam, H. H.; Reinhoudt, D. N.; Verboom, W. Chem Soc
Rev 2007, 36, 367; (b) Ekberg, C.; Fremvik, A.; Retegan, T.;
Skarnemark, G.; Foreman, M. R. S.; Hudson, M. J.; Englund, S.;
Nilsson, M. Radiochim Acta 2008, 96, 225; (c) Kolarik, Z. Chem
Rev 2008, 108, 4208; (d) Steppert, M.; Cisařova, T.; Fanghänel, T.;
Geist, A.; Lindqvist-Reis, P.; Panak, P.; Štĕpnička, P.; Trumm, S.;
Walther, C. Inorg Chem 2012, 51, 591; (e) Cotton, S. Comprehensive
Coordination Chemistry II; Elsevier: Oxford, 2004; Vol. 3, p 93.
[7] Hill, C.; Guillaneux, D.; Berthon, L.; Madic, C. J Nucl Sci
Technol 2002, 39, 309.
[8] Kolarik, Z.; Müllich, U.; Gassner, F. Solvent Extr Ion Exch
1999, 17, 23.
[9] Adam, C.; Kaden, P.; Beele, B. B.; Müllich, U.; Trumm, S.;
Geist, A.; Panak, P. J.; Denecke, M. A. Dalton Trans 2013, 42, 14068.
[10] (a) Case, F. H. J Org Chem 1965, 2, 931–933; (b) Case, F. H.
J Het Chem 1971, 8, 1043.
(vw), 2965 (vw), 2935 (vw), 2838 (vw), 1604 (s), 1575 (m),
1485 (s), 1372 (vs), 1253 (vs), 1170 (s), 834 (s), 812 (m),
1H-NMR (500 MHz, CDCl3) δ 8.84 (d, J = 5.00 Hz, 2H), 8.20 (t,
J = 5.00 Hz, 1H), 7.80 (d, J = 5.00 Hz, 4H), 7.63 (d, J = 5.00 Hz,
4H), 6.92 (d, J = 5.00 Hz, 4H), 6.88 (d, J = 5.00 Hz, 4H), 3.85
(s, 3H), 3.84 (s, 3H), 13C-NMR (125 MHz, CDCl3) δ 162.24,
161.10, 159.98, 155.94, 155.72, 152.64, 138.68, 131.96,
130.90, 127.45, 125.65, 114.22, 114 (unresolved), 114.09,
55.40, 55.34, HRMS (EI) m/z = 661.2462 (661.2438)
calculated for C39H31N7O4.
[11] Szumera, J.; Welniak, M.; Olejniczak, A.; Lukaszewicz, J.
J Forensic Sci 2010, 55, 944.
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet