Journal of the American Chemical Society
Page 8 of 9
[9] Magnesium complexes containing β-Diketiminate ligands have also
Supercomputing Laboratory for providing computational re-
sources of the supercomputer Shaheen II.
been succesfully applied in C−H and C−F activations. For the lead‐
ing examples see: a) Davin, L.; McLellan, R.; Kennedy, A. R.; Hevia,
E. Ligand-Induced Reactivity of β-Diketiminate Magnesium Com-
plexes for Regioselective Functionalization of Fluoroarenes via
C−H or C−F Bond Activations. Chem. Commun. 2017, 53,
11650−11653. b) Davin, L.; McLellan, R.; Hernan-Gómez, A.; Clegg,
W.; Kennedy, A. R.; Mertens, M.; Stepek, I. A.; Hevia, E. Regioselec-
tive Magnesiation of N-Heterocyclic Molecules: Securing Insecure
Cyclic Anions by a β-Diketiminate-Magnesium Clamp. Chem. Com-
mun. 2017, 53, 3653−3656.
1
2
3
4
5
6
7
[1] Weissermel, K.; Arpe, H.–J. Industrial Organic Chemistry 4th edn
(Wiley–VCH, Hoboken, 2008).
[2] a) House, H. O. Modern Synthetic Reactions; W. A. Benjamin; Menlo
Park, CA, 1972; chapters 1–4; b) Huang, C.-Y.; Doyle, A. G. The
Chemistry of Transition Metals with Three-Membered Ring Heter-
ocylces. Chem. Rev. 2014, 114, 8153–8198.
8
9
[10]For selected examples on magnesium-catalyzed hydroboration of
unsaturated bonds, see: a) Arrowsmith, M.; Hill, M.; Hadlington, T.;
Kociok-Köhn, G.; Weetman, C. Magnesium-Catalyzed Hydrobora-
tion of Pyridines. Organometallics 2011, 30, 5556–5559. b) Ar-
rowsmith, M.; Hadlington, T.; Hill, M. S.; Kociok-Köhn, G. Magne-
sium-Catalysed Hydroboration of Aldehydes and Ketones. Chem.
Commun. 2012, 48, 4567–4569. c) Mukherjee, D.; Ellern A.; Sadow,
A.D. Magnesium-Catalyzed Hydroboration of Esters: Evidence for a
New Zwitterionic Mechanism. Chem. Sci. 2014, 5, 959–964. d)
Lampland, N.; Hovey, M.; Mukherjee, D.; Sadow, A. D. Magnesium-
Catalyzed Mild Reduction of Tertiary and Secondary Amides to
Amines. ACS Catal. 2015, 5, 4219–4226. e) Manna, K.; Ji, P.; Greene,
F.; Lin, W. Metal–Organic Framework Nodes Support Single-Site
Magnesium–Alkyl Catalysts for Hydroboration and Hydroamina-
tion Reactions. J. Am. Chem. Soc. 2016, 138, 7488−7491. f) Mukher‐
jee, D.; Shirase, S.; Spaniol, T.; Mashima, K.; Okuda, J. Magnesium
Hydridotriphenylborate [Mg(thf)6][HBPh3]2: a Versatile Hydrobo-
ration Catalyst. Chem. Commun. 2016, 52, 13155–13158. g) Rauch,
M.; Ruccolo, S.; Parkin, G. Synthesis, Structure, and Reactivity of a
Terminal Magnesium Hydride Compound with a Carbatrane Motif,
[TismPriBenz]MgH: A Multifunctional Catalyst for Hydrosilylation
and Hydroboration. J. Am. Chem. Soc. 2017, 139, 13264−13267. h)
Barman, M.; Baishya, A.; Nembenna, S. Magnesium Amide Cata-
lyzed Selective Hydroboration of Esters. Dalton Trans. 2017, 46,
4152–4156. i) Yang, Y.; Anker, M. D.; Fang, J.; Mahon, M. F.; Maron,
L.; Weetman, C.; Hill, M. S. Hydrodeoxygenation of Isocyanates:
Snapshot of a Magnesium-mediated C=O bond cleavage. Chem. Sci.
2017, 8, 3529–3537.
[11]For the use of readily available MgBu2 as catalyst, see: a) Magre, M.;
Maity, B.; Falconnet, A.; Cavallo, L.; Rueping, M. Magnesium-Cata-
lyzed Hydroboration of Terminal and Internal Alkynes. Angew.
Chem. Int. Ed. 2019, 58, 7025–7029. b) Jang, Y. K.; Magre, M.;
Rueping, M. Chemoselective Luche-Type Reduction of α,β-Unsatu-
rated Ketones by Magnesium Catalysis. Org. Lett. 2019, 21,
8349−8352. c) Szewczyk, M.; Magre, M.; Zubar, V.; Rueping, M. Re-
duction of Cyclic and Linear Organic Carbonates using a Readily
Available Magnesium Catalyst. ACS Catal. 2019, 9, 11634–11639.
d) Magre, M.; Szewczyk, M.; Rueping, M. Magnesium-catalyzed ste-
reoselective hydrostannylation of internal and terminal alkynes,
Org. Lett. 2020, 22, 1594–1598. e) Magre, M.; Szewczyk, M.;
Rueping, M. N-Methylation and Trideuteromethylation of Amines
via Magnesium-Catalyzed Reduction of Cyclic and Linear Carba-
mates. Org. Lett. 2020, 22, 3209–3214.
[12]See for example: a) Corey, E. J.; Guzman-Pérez, A.; Noe, M. C. Short
Enantioselective Synthesis of (-)-Ovalicin, a Potent Inhibitor of An-
giogenesis, Using Substrate-Enhanced Catalytic Asymmetric Dihy-
droxylation. J. Am. Chem. Soc. 1994, 116, 12109–12110. b) Movas-
saghi, M.; Pizzi, G.; Siegel, D. S.; Piersanti, G. Enantioselective Total
Synthesis of (-)–Acylfulvene and (-)–Irofulven. Angew. Chem. Int.
Ed. 2006, 45, 5859–5863.
[13]See for example: a) Johnson, R. A.; Sharpless, K. B. In Catalytic
Asymmetric Synthesis; Ojima, I.; Ed.; Wiley-VCH: New York, 2000,
pp 357–398. b) Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.;
Toru, T.; Kanemasa, S. Lewis Acid-Catalyzed Enantioselective Hy-
droxylation Reactions of Oxindoles and -Keto Esters Using DBFOX
Ligand. J. Am. Chem. Soc. 2006, 128, 16488–16489.
[14]For recent review, see: Liu, Y.-L.; Lin, X.-T. Recent Advances in Cat-
alytic Asymmetric Synthesis of Tertiarty Alcohols via Nucleophilic
Addition to Ketones. Adv. Synth. Catal. 2019, 361, 876–918.
[15]a) Falconnet, A.; Magre, M.; Maity, B.; Cavallo, L.; Rueping, M. Asym-
metric Magnesium-Catalyzed Hydroboration by Metal-Ligand Co-
operative Catalysis. Angew. Chem. Int. Ed. 2019, 58, 17567–17571.
b) Chatupheerapat, A.; Rueping, M.; Magre, M. Chemo- and
[3] Chong, C. C.; Kinjo, R. Catalytic Hydroboration of Carbonyl Deriva-
tives, Imines, and Carbon Dioxide. ACS Catal. 2015, 5, 3238–3259.
[4] For selected examples on hydrogenation of epoxides, see: a) New-
man, M. S.; Underwood, G.; Renoll, M. The Reduction of Terminal
Epoxides. J. Am. Chem. Soc. 1949, 71, 3362–3363. b) Ley, S. V.;
Mitchell, C.; Pears, D.; Ramarao, C.; Yu, J.-Q.; Zhou, W. Recyclable
Polyurea-Microencapsulated Pd(0) Nanoparticles: an Efficient Cat-
alyst for Hydrogenolysis of Epoxides. Org. Lett. 2003, 5, 4665–
4668. c) Kwon, M. S., Park, I. S., Jang, J. S., Lee, J. S.; Park, J. Magneti-
cally Separable Pd Catalyst for Highly Selective Epoxide Hydrogen-
olysis under Mild Conditions. Org. Lett. 2007, 9, 3417–3419. d) O,
W. W. N.; Lough, A. J.; Morris, R. H. The Hydrogenation of Molecules
with Polar Bonds Catalyzed by a Ruthenium(II) Complex Bearing a
Chelating N-heterocyclic Carbene with a Primary Amine Donor.
Chem. Commun. 2010, 46, 8240–8242. e) Liu, W.; Li, W.; Spannen-
berg, A.; Junge, K.; Beller, M. Iron-catalysed Regioselective Hydro-
genation of Terminal Epoxides to Alcohols under Mild Conditions.
Nat. Catal. 2019, 2, 523-528. f) Yao, C.; Dahmen, T.; Gansäuer, A.;
Norton, J. Anti-Markovnikov Alcohols via Epoxide Hydrogenation
through Cooperative Catalysis. Science, 2019, 364, 764–767.
[5] For examples on catalytic hydroboration of epoxides, see: a)
Yakabe, S. One-Pot System for Reduction of Epoxides using NaBH4,
PdCl2 Catalyst and Moist Alumina. Synthetic Communications,
2010, 49, 1339–1344. b) Desnoyer, A. N.; Geng, J.; Drover, M. W.;
Patrick, B. O.; Love, J. A. Catalytic Functionalization of Styrenyl
Epoxides via 2-Nickela(II)oxetanes. Chem. Eur. J. 2017, 223,
11509–11512. c) Song, H.; Ye, K.; Geng, P.; Han, X.; Liao, R.; Tung,
C.–H; Wang, W. Activation of Epoxides by a Cooperative Iron–Thi-
olate Catalyst: Intermediacy of Ferrous Alkoxides in Catalytic Hy-
droboration. ACS Catal. 2017, 7, 7709–7717. d) Patnaik, S.; Sadow,
A. D. Interconverting Lanthanum Hydride and Borohydride Cata-
lysts for C=O and C–O Bond Cleavage. Angew. Chem. Int. Ed. 2019,
58, 2505–2509.
[6] For recent reviews on the use of organomagnesium catalysts, see:
a) Crimmin, M. R.; Hill, M. S. Homogeneous catalysis with organo-
metallic complexes of group 2. Top. Organomet. Chem. 2013, 45,
191–241. b) Revunova, K.; Nikonov, G. I. Main group catalysed re-
duction of unsaturated bonds. Dalton Trans. 2015, 44, 840–866. c)
Rochat, R.; López, M. J.; Tsurugi, H.; Mishima, K. Recent Develop-
ments in Homogeneous Organomagnesium Catalysis. Chem-
CatChem 2016, 8, 10–20. d) Hill, M. S.; Liptrot, D. J.; Weetman, C.
Alkaline earths as main group reagents in molecular catalysis.
Chem. Soc. Rev. 2016, 45, 972–988.
[7] For illustrative examples using magnesium organometallics for
deprotonation/metalation reactions, see: a) Dong, Z.; Clososki, G.
C.; Wunderlich, S. H.; Unsinn, A.; Li, J.; Knochel, P. Direct Zincation
of Functionalized Aromatics and Heterocycles by Using a Magne-
sium Base in the Presence of ZnCl2. Chem. Eur. J. 2009, 15, 457−468.
b) Piller, F. M.; Bresser, T.; Fischer, M. K. R.; Knochel, P. Preparation
of Functionalized Cyclic Enol Phosphates by Halogen− Magnesium
Exchange and Directed Deprotonation Reactions. J. Org. Chem.
2010, 75, 4365−4375. c) Haag, B.; Mosrin, M.; Ila, H.; Malakhov, V.;
Knochel, P. Regio- and Chemoselective Metalation of Arenes and
Heteroarenes Using Hindered Metal Amide Bases. Angew. Chem.
Int. Ed. 2011, 50, 9794−9824. d) Knochel, P.; Benischke, A.; Ellwart,
M.; Becker, M. Polyfunctional Zinc and Magnesium Organometallics
for Organic Synthesis: Some Perspectives. Synthesis 2016, 48,
1101−1107.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
[8] Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edward, A. J.;
McIntyre, G. J. β‐Diketiminate‐Stabilized Magnesium(I) Dimers and
Magnesium(II) Hydride Complexes: Synthesis, Characterization,
Adduct Formation, and Reactivity Studies. Chem. Eur. J. 2010, 16,
938–955.
ACS Paragon Plus Environment