763-93-9Relevant articles and documents
Chromium-Catalyzed Production of Diols From Olefins
-
Paragraph 0111, (2021/03/19)
Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Rh(III)Cp? and Ir(III)Cp? Complexes of 1-[(4-Methyl)phenyl]-3-[(2-methyl-4′-R)imidazol-1-yl]triazenide (R = t-Bu or H): Synthesis, Structure, and Catalytic Activity
Camarena-Diáz, Juan P.,Iglesias, Ana L.,Chávez, Daniel,Aguirre, Gerardo,Grotjahn, Douglas B.,Rheingold, Arnold L.,Parra-Hake, Miguel,Miranda-Soto, Valentín
, p. 844 - 851 (2019/02/19)
A series of iridium and rhodium complexes have been synthesized using as ligand a triazenide monofunctionalized with an imidazole substituent. Steric hindrance at the imidazole moiety induced differences in the coordination modes as well in the catalytic behavior of complexes 4-7. Complexes 4-7 were tested in the transfer hydrogenation of acetophenone and 5-alken-2-ones. The hydrogenation of either the double bond or the carbonyl group in 5-alken-2-ones, showed to be selective in the presence of 6, 7, and 10 and has a dependence on the presence or absence of base. Control experiments point out that the imidazole moiety in the structure of complexes 4-7 speeds-up the catalysis.