- THE PROCESS FOR THE PREPARATION AND USE OF HAIR TREATMENT COMPOSITIONS CONTAINING ORGANIC C1-C6 ALKOXY SILANES
-
The subject of the present application is a method for the preparation and use of an agent for the treatment of keratinous material, in particular human hair, comprising the following steps: (1) Mixing one or more organic C1-C6 alkoxy silanes with water,(2) optionally, partial, or complete removal from the reaction mixture of the C1-C6 alcohols liberated by the reaction in step (1),(3) if necessary, addition of one or more cosmetic ingredients,(4) Filling of the preparation into a packaging unit,(5) Storage of the preparation in the packaging unit for a period of at least about 5 days; and(6) Application of the preparation on the keratinous material.
- -
-
-
- Cobalt bis(2-ethylhexanoate) and terpyridine derivatives as catalysts for the hydrosilylation of olefins
-
A simple method for the hydrosilylation of olefins by using air-stable cobalt catalysts is developed. The catalyst system is composed of simple, cheap, and readily available cobalt(II) salts and well-defined terpyridine derivatives as cocatalysts or ligands, and the hydrosilylation processes can be processed smoothly under mild conditions without either Grignard reagents or NaHBEt3 as activator.
- Dai, Zinan,Yu, Zehao,Bai, Ying,Li, Jiayun,Peng, Jiajian
-
-
- METHOD FOR TREATING HAIR, COMPRISING THE APPLICATION OF AN ORGANIC SILICON COMPOUND, AN ALKALISING AGENT AND A FILM-FORMING POLYMER
-
It is an object of the present disclosure to provide a method for treating keratinous material, in particular human hair, comprising the following steps: Application of a water-containing agent (a) to the keratinous material, wherein the agent (a) has and contains a pH of at least 9.6:(a1) at least one organic silicon compound selected from the group including silanes having one, two or three silicon atoms, and(a2) at least one alkalizing agent selected from the group including ammonia, alkanolamines and basic amino acids, andApplication of an agent (b) to the keratinous material, wherein the agent (b) includes:(b1) at least one film-forming polymer.
- -
-
-
- Platinum(II) complexes bearing bulky Schiff base ligands anchored onto mesoporous SBA-15 supports as efficient catalysts for hydrosilylation
-
Reported herein is an easy-to-prepare novel heterogeneous catalyst of platinum complexes bearing binary ligands of bidentate naphthalenolimine and cyclo-1,5-octadiene that are anchored onto mesoporous silica SBA-15. The presence of the binary ligands not only stabilized the platinum, but also enabled the platinum atoms to form nanoclusters with diameters of ca 1?nm, and led to high platinum loading (8.69?wt%). Moreover, the platinum catalyst exhibited high catalytic activity towards hydrosilylation of terminal alkenes and styrene with silanes under mild and solvent-free conditions, with excellent regioselectivity.
- Huo, Yingpeng,Hu, Jiwen,Lin, Shudong,Ju, Xingming,Wei, Yanlong,Huang, Zhenzhu,Hu, Yangfei,Tu, Yuanyuan
-
-
- Tuning the redox non-innocence of a phenalenyl ligand toward efficient nickel-assisted catalytic hydrosilylation
-
In this report, a ligand-redox assisted catalytic hydrosilylation has been investigated. A phenalenyl ligand coordinated nickel complex has been utilized as an electron reservoir to develop a base metal-assisted catalyst, which very efficiently hydrosilylates a wide variety of olefin substrates under ambient conditions. A mechanistic investigation revealed that a two-electron reduced phenalenyl based biradical nickel complex plays the key role in such catalysis. The electronic structure of the catalytically active biradical species has been interrogated using EPR spectroscopy, magnetic susceptibility measurements, and electronic structure calculations using a DFT method. Inhibition of the reaction by a radical quencher, as well as the mass spectrometric detection of two intermediates along the catalytic loop, suggest that a single electron transfer from the ligand backbone initiates the catalysis. The strategy of utilising the redox reservoir property of the ligand ensures that the nickel is not promoted to an unfavorable oxidation state, and the fine tuning between the ligand and metal redox orbitals elicits smooth catalysis.
- Vijaykumar, Gonela,Pariyar, Anand,Ahmed, Jasimuddin,Shaw, Bikash Kumar,Adhikari, Debashis,Mandal, Swadhin K.
-
p. 2817 - 2825
(2018/03/21)
-
- HYDROSILYLATION REACTION CATALYST
-
A hydrosilylation reaction catalyst prepared from: a catalyst precursor comprising a transition metal compound, excluding platinum, belonging to group 8-10 of the periodic table, e.g., iron acetate, cobalt acetate, nickel acetate, etc.; and a ligand comprising a carbine compound such as 1,3-dimesitylimidazol-2-ylidene, etc. The hydrosilylation reaction catalyst has excellent handling and storage properties. As a result of using this catalyst, a hydrosilylation reaction can be promoted under gentle conditions.
- -
-
Paragraph 0239; 0243
(2017/09/25)
-
- An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes
-
The first efficient and non-precious nanoparticle catalyst for alkene hydrosilylation with commercially relevant tertiary silanes has been developed. The nickel nanoparticle catalyst was prepared in situ from a simple nickel alkoxide precatalyst Ni(OtBu)2?x KCl. The catalyst exhibits high activity for anti-Markovnikov hydrosilylation of unactivated terminal alkenes and isomerizing hydrosilylation of internal alkenes. The catalyst can be applied to synthesize a single terminal alkyl silane from a mixture of internal and terminal alkene isomers, and to remotely functionalize an internal alkene derived from a fatty acid.
- Buslov, Ivan,Song, Fang,Hu, Xile
-
supporting information
p. 12295 - 12299
(2016/10/13)
-
- A Highly Chemoselective Cobalt Catalyst for the Hydrosilylation of Alkenes using Tertiary Silanes and Hydrosiloxanes
-
The hydrosilylation of alkene substrates bearing additional functionalities is difficult to achieve using earth-abundant catalysts and has not been extensively realized with both earth-abundant transition metals and tertiary silanes or hydrosiloxanes. Reported herein is a well-defined bis(carbene) cobalt(I)-dinitrogen complex for the efficient, catalytic anti-Markovnikov hydrosilylation of terminal alkenes, featuring a broad substrate scope. Alkenes containing hydroxyl, amino, ester, epoxide, ketone, formyl, and nitrile groups are selectively hydrosilylated in this reaction sequence. Multinuclear NMR studies of reactive intermediates gave insights into the mechanism.
- Ibrahim, Abdulrahman D.,Entsminger, Steven W.,Zhu, Lingyang,Fout, Alison R.
-
p. 3589 - 3593
(2016/07/06)
-
- Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes
-
Chemoselective hydrosilylation of functionalized alkenes is difficult to achieve using base-metal catalysts. Reported herein is that well-defined bis(amino)amide nickel pincer complexes are efficient catalysts for anti-Markovnikov hydrosilylation of terminal alkenes with turnover frequencies of up to 83 000 per hour and turnover numbers of up to 10 000. Alkenes containing amino, ester, amido, ketone, and formyl groups are selectively hydrosilylated. A slight modification of reaction conditions allows tandem isomerization/hydrosilylation reactions of internal alkenes using these nickel catalysts.
- Buslov, Ivan,Becouse, Jeanne,Mazza, Simona,Montandon-Clerc, Mickael,Hu, Xile
-
supporting information
p. 14523 - 14526
(2016/01/25)
-
- Hydrosilylation of alkenes catalyzed by rhodium with polyethylene glycol-based ionic liquids as ligands
-
A series of polyethylene glycol-functionalized imidazolium ionic liquids has been prepared and characterized. These ionic liquids have been successfully applied in the hydrosilylation of alkenes catalyzed by rhodium complexes. The effects of the length of the polyether chain, the amount of ionic liquid, and the reaction temperature on the catalytic performance of hydrosilylation have been investigated. Furthermore, the catalytic system has been tested for the hydrosilylation of different alkenes with triethoxysilane. The new catalytic system exhibits both excellent catalytic activity and selectivity under low-temperature conditions. The catalyst system could be recycled five times with slightly deactivation.
- Xu, Yisong,Bai, Ying,Peng, Jiajian,Li, Jiayun,Xiao, Wenjun,Lai, Guoqiao
-
-
- COSMETIC TREATMENT METHOD COMPRISING THE APPLICATION OF A COATING BASED ON AN AEROGEL COMPOSITION OF LOW BULK DENSITY
-
The present invention relates to a cosmetic treatment method comprising the formation of a coating on keratin fibres characterized in that it comprises: 1) the preparation of an aerogel precursor composition comprising:—at least one organic solvent chosen from acetone, C1-C4 alcohols, C1-C6 alkanes, C1-C4 ethers, which may or may not be perfluorinated, and mixtures thereof and at least one precursor compound that contains:—at least one atom chosen from silicon, titanium, aluminium and zirconium,—at least one hydroxyl or alkoxy function directly attached to the atom chosen from silicon, titanium, aluminium and zirconium by an oxygen atom, and,—optionally an organic group directly attached to the atom chosen from silicon, titanium, aluminium and zirconium by a carbon atom, 2) the removal of the solvent or solvents resulting in the formation of an aerogel composition having a bulk density less than or equal to 0.35 g/cm3, 3) the application to the keratin fibres of the aerogel composition resulting from step 2) or of the aerogel precursor composition resulting from step 1). Advantageously, the molar ratio between the precursor compounds and the solvent is at most 1/20.
- -
-
Paragraph 0067
(2014/02/15)
-
- METHOD FOR EXTENDING LONG-TERM ELECTRICAL POWER CABLE PERFORMANCE
-
An improved method for imparting excellent long-term dielectric performance to an in-service electrical cable section having a stranded conductor surrounded by a conductor shield encased in a polymeric insulation and having an interstitial void volume in the region of the conductor, the cable section having an average operating temperature T. The method comprising injecting a dielectric enhancement fluid composition into the interstitial void volume, the composition comprising at least one component selected from: (1) a water-reactive material selected from an organosilane monomer, the above organosilane monomer wherein at least one of the water-reactive groups has been substituted with a condensable silanol group, an oligomer of the above organosilane monomer, or a co-oligomer of the above organosilane monomer, the organosilane monomer having a diffusion coefficient at least about 15 times greater than the diffusion coefficient of its corresponding tetramer;(2) a water-reactive material similar to (1) having at least one group attached to silicon comprising 7 to about 20 —CH2— units;(3) a non-water-reactive organic material which has a diffusion coefficient of less than about 10?9 cm2/sec and an equilibrium concentration of at least about 0.005 gm/cm3 in the polymeric insulation, the above mentioned diffusion coefficients and equilibrium concentration being determined at temperature T; or(4) an organic compound having an equilibrium concentration in the polymeric insulation at 55° C. which is less than 2.25 times the equilibrium concentration at 22° C.
- -
-
-
- Enhancement of the efficiency of the low temperature method for kinetic resolution of primary alcohols by optimizing the organic bridges in porous ceramic-immobilized lipase
-
For the enhancement of enantioselectivity and acceleration of the reaction rate in the lipase-catalyzed resolution of primary alcohols, the use of a very low reaction temperature (-30 °C) and an immobilized lipase on organic bridges-coated porous ceramic support was found to be highly effective. Furthermore, the structure of the organic bridges greatly influenced the temperature effect between in E and 1/T as well as the reaction rate. Among the organic bridges examined in the resolution of (±)-2-hydroxymethyl-1,4-benzodioxane, the 6-(2-methylpropanoyloxy)hexylsilanetrioxyl bridge was the best choice for both the E value and the reaction rate at -30 °C.
- Sakai, Takashi,Hayashi, Kyoko,Yano, Fumika,Takami, Mie,Ino, Megumi,Korenaga, Toshinobu,Ema, Tadashi
-
p. 1441 - 1446
(2007/10/03)
-
- Process for preparing low-chloride or chloride-free alkoxysilanes
-
A process for preparing an alkoxysilane with an acidic chloride content of less than 10 ppm by weight, comprising: reacting a chlorosilane with an alcohol in a water-free and solvent-free phase to form a product mixture containing alkoxysilane and residual acidic chloride, with removal of resultant hydrogen chloride from the product mixture, then adding liquid or gaseous ammonia, in an amount corresponding to a stoichiometric excess, based on the content of acidic chloride, to form an ammonia-containing product mixture, treating the ammonia-containing product mixture at a temperature between 10 and 50 DEG C., wherein the ammonia and acidic chloride undergo neutralization, to form a crude product, and optionally, then separating off a salt formed in the course of neutralization, from the crude product, and recovering the alkoxysilane by distilling the crude product.
- -
-
-