Welcome to LookChem.com Sign In|Join Free

CAS

  • or

25191-17-7

Post Buying Request

25191-17-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

25191-17-7 Usage

Uses

POLY-L-ALANINE is used as molecular weight standards.

Check Digit Verification of cas no

The CAS Registry Mumber 25191-17-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,5,1,9 and 1 respectively; the second part has 2 digits, 1 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 25191-17:
(7*2)+(6*5)+(5*1)+(4*9)+(3*1)+(2*1)+(1*7)=97
97 % 10 = 7
So 25191-17-7 is a valid CAS Registry Number.

25191-17-7Relevant articles and documents

Protein thiocarboxylate-dependent methionine biosynthesis in Wolinella succinogenes

Krishnamoorthy, Kalyanaraman,Begley, Tadhg P.

, p. 379 - 386 (2011)

Thiocarboxylated proteins are important intermediates in a variety of biochemical sulfide transfer reactions. Here we identify a protein thiocarboxylate-dependent methionine biosynthetic pathway in Wolinella succinogenes. In this pathway, the carboxy terminal alanine of a novel sulfur transfer protein, HcyS-Ala, is removed in a reaction catalyzed by a metalloprotease, HcyD. HcyF, an ATP-utilizing enzyme, catalyzes the adenylation of HcyS. HcyS acyl-adenylate then undergoes nucleophilic substitution by bisulfide produced by Sir to give the HcyS thiocarboxylate. This adds to O-acetylhomoserine to give HcyS-homocysteine in a PLP-dependent reaction catalyzed by MetY. HcyD-mediated hydrolysis liberates homocysteine. A final methylation completes the biosynthesis. The biosynthetic gene cluster also encodes the enzymes involved in the conversion of sulfate to sulfide suggesting that sulfate is the sulfur source for protein thiocarboxylate formation in this system.

Recreating the natural evolutionary trend in key microdomains provides an effective strategy for engineering of a thermomicrobial N-demethylase

Gu, Zhenghua,Guo, Zitao,Shao, Jun,Shen, Chen,Shi, Yi,Tang, Mengwei,Xin, Yu,Zhang, Liang

, (2022/03/09)

N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N-bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains—including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site—was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.

Highly Stable Zr(IV)-Based Metal-Organic Frameworks for Chiral Separation in Reversed-Phase Liquid Chromatography

Jiang, Hong,Yang, Kuiwei,Zhao, Xiangxiang,Zhang, Wenqiang,Liu, Yan,Jiang, Jianwen,Cui, Yong

supporting information, p. 390 - 398 (2021/01/13)

Separation of racemic mixtures is of great importance and interest in chemistry and pharmacology. Porous materials including metal-organic frameworks (MOFs) have been widely explored as chiral stationary phases (CSPs) in chiral resolution. However, it remains a challenge to develop new CSPs for reversed-phase high-performance liquid chromatography (RP-HPLC), which is the most popular chromatographic mode and accounts for over 90% of all separations. Here we demonstrated for the first time that highly stable Zr-based MOFs can be efficient CSPs for RP-HPLC. By elaborately designing and synthesizing three tetracarboxylate ligands of enantiopure 1,1′-biphenyl-20-crown-6, we prepared three chiral porous Zr(IV)-MOFs with the framework formula [Zr6O4(OH)8(H2O)4(L)2]. They share the same flu topological structure but channels of different sizes and display excellent tolerance to water, acid, and base. Chiral crown ether moieties are periodically aligned within the framework channels, allowing for stereoselective recognition of guest molecules via supramolecular interactions. Under acidic aqueous eluent conditions, the Zr-MOF-packed HPLC columns provide high resolution, selectivity, and durability for the separation of a variety of model racemates, including unprotected and protected amino acids and N-containing drugs, which are comparable to or even superior to several commercial chiral columns for HPLC separation. DFT calculations suggest that the Zr-MOF provides a confined microenvironment for chiral crown ethers that dictates the separation selectivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 25191-17-7