Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2443-39-2

Post Buying Request

2443-39-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2443-39-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 2443-39-2 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,4,4 and 3 respectively; the second part has 2 digits, 3 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 2443-39:
(6*2)+(5*4)+(4*4)+(3*3)+(2*3)+(1*9)=72
72 % 10 = 2
So 2443-39-2 is a valid CAS Registry Number.
InChI:InChI=1/C18H34O3/c1-2-3-4-5-7-10-13-16-17(21-16)14-11-8-6-9-12-15-18(19)20/h16-17H,2-15H2,1H3,(H,19,20)/t16?,17-/m0/s1

2443-39-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name TRANS-9,10-EPOXYOCTADECANOIC ACID

1.2 Other means of identification

Product number -
Other names 3-Octyloxiraneoctanoic Acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2443-39-2 SDS

2443-39-2Relevant articles and documents

PROCESS FOR THE PREPARATION OF HYDROPEROXY ALCOHOLS USING A HETEROGENOUS CATALYST

-

Page/Page column 14-16-20, (2021/07/02)

The present invention relates to a process for preparing hydroperoxy alcohols using hydrogen peroxide as an oxidant in a solvent selected from water-soluble carboxylic acids, in the presence of a metallic mixed oxide heterogeneous catalyst. It also pertains to the use of this catalyst in the synthesis of hydroperoxy alcohols.

Reactive Species and Reaction Pathways for the Oxidative Cleavage of 4-Octene and Oleic Acid with H2O2over Tungsten Oxide Catalysts

Yun, Danim,Ayla, E. Zeynep,Bregante, Daniel T.,Flaherty, David W.

, p. 3137 - 3152 (2021/04/06)

Oxidative cleavage of carbon-carbon double bonds (C-C) in alkenes and fatty acids produces aldehydes and acids valued as chemical intermediates. Solid tungsten oxide catalysts are low cost, nontoxic, and selective for the oxidative cleavage of C-C bonds with hydrogen peroxide (H2O2) and are, therefore, a promising option for continuous processes. Despite the relevance of these materials, the elementary steps involved and their sensitivity to the form of W sites present on surfaces have not been described. Here, we combine in situ spectroscopy and rate measurements to identify significant steps in the reaction and the reactive species present on the catalysts and examine differences between the kinetics of this reaction on isolated W atoms grafted to alumina and on those exposed on crystalline WO3 nanoparticles. Raman spectroscopy shows that W-peroxo complexes (W-(η2-O2)) formed from H2O2 react with alkenes in a kinetically relevant step to produce epoxides, which undergo hydrolysis at protic surface sites. Subsequently, the CH3CN solvent deprotonates diols to form alpha-hydroxy ketones that react to form aldehydes and water following nucleophilic attack of H2O2. Turnover rates for oxidative cleavage, determined by in situ site titrations, on WOx-Al2O3 are 75% greater than those on WO3 at standard conditions. These differences reflect the activation enthalpies (ΔH?) for the oxidative cleavage of 4-octene that are much lower than those for the isolated WOx sites (36 ± 3 and 60 ± 6 kJ·mol-1 for WOx-Al2O3 and WO3, respectively) and correlate strongly with the difference between the enthalpies of adsorption for epoxyoctane (ΔHads,epox), which resembles the transition state for epoxidation. The WOx-Al2O3 catalysts mediate oxidative cleavage of oleic acid with H2O2 following a mechanism comparable to that for the oxidative cleavage of 4-octene. The WO3 materials, however, form only the epoxide and do not cleave the C-C bond or produce aldehydes and acids. These differences reflect the distinct site requirements for these reaction pathways and indicate that acid sites required for diol formation are strongly inhibited by oleic acids and epoxides on WO3 whereas the Al2O3 support provides sites competent for this reaction and increase the yield of the oxidative cleavage products.

Highly efficient epoxidation of vegetable oils catalyzed by a manganese complex with hydrogen peroxide and acetic acid

Chen, Jianming,De Liedekerke Beaufort, Marc,Gyurik, Lucas,Dorresteijn, Joren,Otte, Matthias,Klein Gebbink, Robertus J. M.

, p. 2436 - 2447 (2019/05/21)

Epoxidized vegetable oils (EVOs) are versatile building blocks for lubricants, plasticizers, polyvinyl chloride (PVC) stabilizers, and surface coating formulations. In this paper, a catalytic protocol for the efficient epoxidation of vegetable oils is presented that is based on a combination of a manganese catalyst, H2O2 as an oxidant, and acetic acid as an additive. This protocol relies on the use of a homogeneous catalyst based on the non-noble metal manganese in combination with a racemic mixture of the N,N′-bis(2-picolyl)-2,2′-bispyrrolidine ligand (rac-BPBP). The optimized reaction conditions entail only 0.03 mol% of the manganese catalyst with respect to the number of double bonds (ca. 0.1 wt% with respect to the oil) and ambient temperature. This epoxidation protocol is highly efficient, since it allows most of the investigated vegetable oils, including cheap waste cooking oil, to be fully epoxidized to EVOs in more than 90% yield with excellent epoxide selectivities (>90%) within 2 h of reaction time. In addition, the protocol takes place in a biphasic reaction medium constituted by the vegetable oil itself and an aqueous acetic acid phase, from which the epoxidized product can be easily separated via simple extraction. In terms of efficiency and reaction conditions, the current epoxidation protocol outperforms previously reported catalytic protocols for plant oil epoxidation, representing a promising alternative method for EVO production.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2443-39-2