Welcome to LookChem.com Sign In|Join Free

CAS

  • or

23567-25-1

Post Buying Request

23567-25-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

23567-25-1 Usage

Description

L-(-)-TALOSE, also known as the acyclic form of L-talose, is a white fine crystalline powder. It is a novel substrate of ribose-5-phosphate as well as glucose-6-phosphate isomerases and can be converted into L-tagatose.

Uses

Used in Pharmaceutical Industry:
L-(-)-TALOSE is used as a novel substrate for [application reason] in the pharmaceutical industry. Its ability to be converted into L-tagatose makes it a valuable compound for the development of new drugs and therapies.
Used in Chemical Synthesis:
L-(-)-TALOSE is used as a key intermediate in the synthesis of various chemical compounds. Its unique properties as a white fine crystalline powder make it suitable for use in the production of different chemicals and materials.
Used in Research and Development:
L-(-)-TALOSE is used as a research compound for [application reason] in the field of biochemistry and molecular biology. Its role as a substrate for ribose-5-phosphate and glucose-6-phosphate isomerases allows scientists to study the mechanisms of these enzymes and their potential applications in medicine and biotechnology.

Check Digit Verification of cas no

The CAS Registry Mumber 23567-25-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,3,5,6 and 7 respectively; the second part has 2 digits, 2 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 23567-25:
(7*2)+(6*3)+(5*5)+(4*6)+(3*7)+(2*2)+(1*5)=111
111 % 10 = 1
So 23567-25-1 is a valid CAS Registry Number.
InChI:InChI=1/C6H12O6/c7-1-2-3(8)4(9)5(10)6(11)12-2/h2-11H,1H2/t2-,3+,4+,5+,6+/m0/s1

23567-25-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 11, 2017

Revision Date: Aug 11, 2017

1.Identification

1.1 GHS Product identifier

Product name aldehydo-L-talose

1.2 Other means of identification

Product number -
Other names altrose

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:23567-25-1 SDS

23567-25-1Relevant articles and documents

Orthogonal Active-Site Labels for Mixed-Linkage endo-β-Glucanases

Jain, Namrata,Tamura, Kazune,Déjean, Guillaume,Van Petegem, Filip,Brumer, Harry

, p. 1968 - 1984 (2021/05/26)

Small molecule irreversible inhibitors are valuable tools for determining catalytically important active-site residues and revealing key details of the specificity, structure, and function of glycoside hydrolases (GHs). β-glucans that contain backbone β(1,3) linkages are widespread in nature, e.g., mixed-linkage β(1,3)/β(1,4)-glucans in the cell walls of higher plants and β(1,3)glucans in yeasts and algae. Commensurate with this ubiquity, a large diversity of mixed-linkage endoglucanases (MLGases, EC 3.2.1.73) and endo-β(1,3)-glucanases (laminarinases, EC 3.2.1.39 and EC 3.2.1.6) have evolved to specifically hydrolyze these polysaccharides, respectively, in environmental niches including the human gut. To facilitate biochemical and structural analysis of these GHs, with a focus on MLGases, we present here the facile chemo-enzymatic synthesis of a library of active-site-directed enzyme inhibitors based on mixed-linkage oligosaccharide scaffolds and N-bromoacetylglycosylamine or 2-fluoro-2-deoxyglycoside warheads. The effectiveness and irreversibility of these inhibitors were tested with exemplar MLGases and an endo-β(1,3)-glucanase. Notably, determination of inhibitor-bound crystal structures of a human-gut microbial MLGase from Glycoside Hydrolase Family 16 revealed.

Method for preparing lactic acid through catalytically converting carbohydrate

-

Paragraph 0029-0040, (2020/11/01)

The invention relates to a method for preparing lactic acid through catalytically converting carbohydrate, and in particular, relates to a process for preparing lactic acid by catalytically convertingcarbohydrate under hydrothermal conditions. The method disclosed by the invention is characterized by specifically comprising the following steps: 1) adding carbohydrate and a catalyst into a closedhigh-pressure reaction kettle, and then adding pure water for mixing; 2) introducing nitrogen into the high-pressure reaction kettle to discharge air, introducing nitrogen of 2 MPa, stirring and heating to 160-300 DEG C, and carrying out reaction for 10-120 minutes; 3) putting the high-pressure reaction kettle in an ice-water bath, and cooling to room temperature; and 4) filtering the solution through a microporous filtering membrane to obtain the target product. The method can realize high conversion rate of carbohydrate and high yield of lactic acid, and has the advantages of less catalyst consumption, good circularity, small corrosion to reaction equipment and the like.

Shape-selective Valorization of Biomass-derived Glycolaldehyde using Tin-containing Zeolites

Tolborg, S?ren,Meier, Sebastian,Saravanamurugan, Shunmugavel,Fristrup, Peter,Taarning, Esben,Sádaba, Irantzu

, p. 3054 - 3061 (2016/11/17)

A highly selective self-condensation of glycolaldehyde to different C4 molecules has been achieved using Lewis acidic stannosilicate catalysts in water at moderate temperatures (40–100 °C). The medium-sized zeolite pores (10-membered ring framework) in Sn-MFI facilitate the formation of tetrose sugars while hindering consecutive aldol reactions leading to hexose sugars. High yields of tetrose sugars (74 %) with minor amounts of vinyl glycolic acid (VGA), an α-hydroxyacid, are obtained using Sn-MFI with selectivities towards C4 products reaching 97 %. Tin catalysts having large pores or no pore structure (Sn-Beta, Sn-MCM-41, Sn-SBA-15, tin chloride) led to lower selectivities for C4 sugars due to formation of hexose sugars. In the case of Sn-Beta, VGA is the main product (30 %), illustrating differences in selectivity of the Sn sites in the different frameworks. Under optimized conditions, GA can undergo further conversion, leading to yields of up to 44 % of VGA using Sn-MFI in water. The use of Sn-MFI offers multiple possibilities for valorization of biomass-derived GA in water under mild conditions selectively producing C4 molecules.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 23567-25-1