Welcome to LookChem.com Sign In|Join Free

CAS

  • or

15574-38-6

Post Buying Request

15574-38-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • D-Glutamic acid, N-[4-[[(2-amino-1,4,7,8-tetrahydro-4-oxo-6-pteridinyl)methyl]amino]benz oyl]-

    Cas No: 15574-38-6

  • No Data

  • No Data

  • No Data

  • Kono Chem Co.,Ltd
  • Contact Supplier

15574-38-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 15574-38-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,5,7 and 4 respectively; the second part has 2 digits, 3 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 15574-38:
(7*1)+(6*5)+(5*5)+(4*7)+(3*4)+(2*3)+(1*8)=116
116 % 10 = 6
So 15574-38-6 is a valid CAS Registry Number.

15574-38-6Relevant articles and documents

Evidence that a ' dynamic knockoutg' in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis

Loveridge, E. Joel,Behiry, Enas M.,Guo, Jiannan,Allemann, Rudolf K.

, p. 292 - 297 (2012)

The question of whether protein motions play a role in the chemical step of enzymatic catalysis has generated much controversy in recent years. Debate has recently reignited over possible dynamic contributions to catalysis in dihydrofolate reductase, foll

Binding pocket alterations in dihydrofolate synthase confer resistance to para-aminosalicylic acid in clinical isolates of Mycobacterium tuberculosis

Zhao, Fei,Wang, Xu-De,Erber, Luke N.,Luo, Ming,Guo, Ai-Zhen,Yang, Shan-Shan,Gu, Jing,Turman, Breanna J.,Gao, Yun-Rong,Li, Dong-Fang,Cui, Zong-Qiang,Zhang, Zhi-Ping,Bi, Li-Jun,Baughn, Anthony D.,Zhang, Xian-En,Deng, Jiao-Yu

, p. 1479 - 1487 (2014/03/21)

The mechanistic basis for the resistance of Mycobacterium tuberculosis to para-aminosalicylic acid (PAS), an important agent in the treatment of multidrug-resistant tuberculosis, has yet to be fully defined. As a substrate analog of the folate precursor paraaminobenzoic acid, PAS is ultimately bioactivated to hydroxy dihydrofolate, which inhibits dihydrofolate reductase and disrupts the operation of folate-dependent metabolic pathways. As a result, the mutation of dihydrofolate synthase, an enzyme needed for the bioactivation of PAS, causes PAS resistance in M. tuberculosis strain H37Rv. Here, we demonstrate that various missense mutations within the coding sequence of the dihydropteroate (H2Pte) binding pocket of dihydrofolate synthase (FolC) confer PAS resistance in laboratory isolates of M. tuberculosis and Mycobacterium bovis. From a panel of 85 multidrug-resistant M. tuberculosis clinical isolates, 5 were found to harbor mutations in the folC gene within the H2Pte binding pocket, resulting in PAS resistance. While these alterations in the H2Pte binding pocket resulted in reduced dihydrofolate synthase activity, they also abolished the bioactivation of hydroxy dihydropteroate to hydroxy dihydrofolate. Consistent with this model for abolished bioactivation, the introduction of a wild-type copy of folC fully restored PAS susceptibility in folC mutant strains. Confirmation of this novel PAS resistance mechanism will be beneficial for the development of molecular method-based diagnostics for M. tuberculosis clinical isolates and for further defining the mode of action of this important tuberculosis drug. Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15574-38-6