Welcome to LookChem.com Sign In|Join Free

CAS

  • or

15184-98-2

Post Buying Request

15184-98-2 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

15184-98-2 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 15184-98-2 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,5,1,8 and 4 respectively; the second part has 2 digits, 9 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 15184-98:
(7*1)+(6*5)+(5*1)+(4*8)+(3*4)+(2*9)+(1*8)=112
112 % 10 = 2
So 15184-98-2 is a valid CAS Registry Number.

15184-98-2SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name N,N-dimethyl-4-chlorobenzylamine

1.2 Other means of identification

Product number -
Other names N,N-dimethyl-4-chlorobenzylamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:15184-98-2 SDS

15184-98-2Relevant articles and documents

Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application

Han, Bo,Jiao, Haijun,Wu, Lipeng,Zhang, Jiong

, p. 2059 - 2067 (2021/09/02)

Developing mild and efficient catalytic methods for the selective synthesis of amines is a longstanding research objective. In this respect, catalytic deoxygenative amide reduction has proven to be promising but challenging, as this approach necessitates selective C–O bond cleavage. Herein, we report the selective hydroboration of primary, secondary, and tertiary amides at room temperature catalyzed by an earth-abundant-metal catalyst, Zr-H, for accessing diverse amines. Various readily reducible functional groups, such as esters, alkynes, and alkenes, were well tolerated. Furthermore, the methodology was extended to the synthesis of bio- and drug-derived amines. Detailed mechanistic studies revealed a reaction pathway entailing aldehyde and amido complex formation via an unusual C–N bond cleavage-reformation process, followed by C–O bond cleavage.

Manganese-Catalyzed Hydroborations with Broad Scope

Ghosh, Pradip,Jacobi von Wangelin, Axel

supporting information, p. 16035 - 16043 (2021/06/16)

Reductive transformations of easily available oxidized matter are at the heart of synthetic manipulation and chemical valorization. The applications of catalytic hydrofunctionalization benefit from the use of liquid reducing agents and operationally facile setups. Metal-catalyzed hydroborations provide a highly prolific platform for reductive valorizations of stable C=X electrophiles. Here, we report an especially facile, broad-scope reduction of various functions including carbonyls, carboxylates, pyridines, carbodiimides, and carbonates under very mild conditions with the inexpensive pre-catalyst Mn(hmds)2. The reaction could be successfully applied to depolymerizations.

Simplified preparation of a graphene-co-shelled Ni/NiO@C nano-catalyst and its application in theN-dimethylation synthesis of amines under mild conditions

Liu, Jianguo,Ma, Longlong,Song, Yanpei,Zhang, Mingyue,Zhuang, Xiuzheng

supporting information, p. 4604 - 4617 (2021/06/30)

The development of Earth-abundant, reusable and non-toxic heterogeneous catalysts to be applied in the pharmaceutical industry for bio-active relevant compound synthesis remains an important goal of general chemical research.N-methylated compounds, as one of the most essential bioactive compounds, have been widely used in the fine and bulk chemical industries for the production of high-value chemicals. Herein, an environmentally friendly and simplified method for the preparation of graphene encapsulated Ni/NiO nanoalloy catalysts (Ni/NiO@C) was developed for the first time, for the highly selective synthesis ofN-methylated compounds using various functional amines and aldehydes under easy to handle, and industrially applicable conditions. A large number of primary and secondary amines (more than 70 examples) could be converted to the correspondingN,N-dimethylamines with the participation of different functional aldehydes, with an average yield of over 95%. A gram-scale synthesis also demonstrated a similar yield when compared with the benchmark test. In addition, it was further proved that the catalyst could easily be recycled because of its intrinsic magnetism and reused up to 10 times without losing its activity and selectivity. Also, for the first time, the tandem synthesis ofN,N-dimethylamine products in a one-pot process, using only a single earth-abundant metal catalyst, whose activity and selectivity were more than 99% and 94%, respectively, for all tested substrates, was developed. Overall, the advantages of this newly developed method include operational simplicity, high stability, easy recyclability, cost-effectiveness of the catalyst, and good functional group compatibility for the synthesis ofN-methylation products as well as the industrially applicable tandem synthesis process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 15184-98-2