Welcome to LookChem.com Sign In|Join Free

CAS

  • or

131998-76-0

Post Buying Request

131998-76-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

131998-76-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 131998-76-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,3,1,9,9 and 8 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 131998-76:
(8*1)+(7*3)+(6*1)+(5*9)+(4*9)+(3*8)+(2*7)+(1*6)=160
160 % 10 = 0
So 131998-76-0 is a valid CAS Registry Number.

131998-76-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-phenylazocane

1.2 Other means of identification

Product number -
Other names 1-phenyloctahydroazocine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:131998-76-0 SDS

131998-76-0Relevant articles and documents

Organic photoredox catalytic α-C(sp3)-H phosphorylation of saturated: Aza -heterocycles

Yi, Ming-Jun,Xiao, Teng-Fei,Li, Wen-Hui,Zhang, Yi-Fan,Yan, Pen-Ji,Zhang, Baoxin,Xu, Peng-Fei,Xu, Guo-Qiang

supporting information, p. 13158 - 13161 (2021/12/16)

A metal-free C(sp3)-H phosphorylation of saturated aza-heterocycles via the merger of organic photoredox and Br?nsted acid catalyses was established under mild conditions. This protocol provided straightforward and economic access to a variety of valuable α-phosphoryl cyclic amines by using commercially available diarylphosphine oxide reagents. In addition, the D-A fluorescent molecule DCQ was used for the first time as a photocatalyst and exhibited an excellent photoredox catalytic efficiency in this transformation. A series of mechanistic experiments and DFT calculations demonstrated that this transformation underwent a sequential visible light photoredox catalytic oxidation/nucleophilic addition process.

A new route to N-aromatic heterocycles from the hydrogenation of diesters in the presence of anilines

Shi, Yiping,Kamer, Paul C. J.,Cole-Hamilton, David J.,Harvie, Michelle,Baxter, Emma F.,Lim, Kate J. C.,Pogorzelec, Peter

, p. 6911 - 6917 (2017/10/05)

The hydrogenation of dicarboxylic acids and their esters in the presence of anilines provides a new synthesis of heterocycles. [Ru(acac)3] and 1,1,1-tris(diphenylphosphinomethyl)ethane (triphos) gave good to excellent yields of the cyclic amines at 220 °C. When aqueous ammonia was used with dimethyl 1,6-hexadienoic acid, ?-caprolactam was obtained in good yield. A side reaction involving alkylation of the amine by methanol was suppressed by using diesters derived from longer chain and branched alcohols. Hydrogenation of optically pure diesters (dimethyl (R)-2-methylbutanedioate and dimethyl (S)-2-methylbutanedioate) with aniline afforded racemic 3-methyl-1-phenylpyrrolidine in 78% yield.

Pt-Sn/γ-Al2O3-catalyzed highly efficient direct synthesis of secondary and tertiary amines and imines

He, Wei,Wang, Liandi,Sun, Chenglin,Wu, Kaikai,He, Songbo,Chen, Jiping,Wu, Ping,Yu, Zhengkun

experimental part, p. 13308 - 13317 (2012/02/02)

Versatile syntheses of secondary and tertiary amines by highly efficient direct N-alkylation of primary and secondary amines with alcohols or by deaminative self-coupling of primary amines have been successfully realized by means of a heterogeneous bimetallic Pt-Sn/γ-Al2O3 catalyst (0.5 wt % Pt, Pt/Sn molar ratio=1:3) through a borrowing-hydrogen strategy. In the presence of oxygen, imines were also efficiently prepared from the tandem reactions of amines with alcohols or between two primary amines. The proposed mechanism reveals that an alcohol or amine substrate is initially dehydrogenated to an aldehyde/ketone or NH-imine with concomitant formation of a [PtSn] hydride. Condensation of the aldehyde/ketone species or deamination of the NH-imine intermediate with another molecule of amine forms an N-substituted imine which is then reduced to a new amine product by the in-situ generated [PtSn] hydride under a nitrogen atmosphere or remains unchanged as the final product under an oxygen atmosphere. The Pt-Sn/γ-Al2O 3 catalyst can be easily recycled without Pt metal leaching and has exhibited very high catalytic activity toward a wide range of amine and alcohol substrates, which suggests potential for application in the direct production of secondary and tertiary amines and N-substituted imines.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 131998-76-0